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On Performance Limitations of Aperture
Coupling Between Rectangular Waveguides

CHANG-HONG LIANG AND DAVID K. CHENG, FELLOW, IEEE

Abstract —Tfre conditions for and expressions of the best coupling

flatness and optimum directivity obtainable over a given bandwidth from

broad-wall aperture coupling between rectangular waveguides are derived.

An inequality representing a constraining relationship among coupling

flatness, directivity, and bandwidth is established.

I. INTRODUCTION

D

ESPITE THE importance of wide-band waveguide

directional couplers using discrete apertures, few stud-

ies have been made on the conditions for optimum single-

aperture performance from the synthesis viewpoint. In this

paper, we first obtain a formula for the best coupling

flatness attainable over a prescribed bandwidth for a small

aperture of an arbitrary shape in the common broad wall

between two rectangular waveguides. The conditions for

achieving the optimum coupling flatness are derived and

applied to both circular and T-shaped slot-pair apertures.

Next, we examine the minimum coupling directivity over

the bandwidth and find the requirements for maximizing

this minimum directivity. Thirdly, we formulate an inequal-

ity which shows the interrelationship among the coupling

flatness coefficient, the minimum coupling directivity, and

the relative waveguide bandwidth.

II. OPTIMUM COUPLING FLATNESS

Consider two rectangular waveguides with a common

broad wall in which a single aperture is cut, as shown in

Fig. 1. The dimensions of the aperture in terms of wave-

length are such that Bethe’s small-hole coupling theory

applies [1]. Assuming negligible wall thickness, the normal-

ized amplitude of the forward scattering wave for the

dominant TE,O mode is [2]

A=*{[Mx-(})2~y]sin’(;)

+Mzo)’d(q (1)

and the normalized amplitude of the backward scattering
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Fig. 1. Rectangular waveguide with broad-wall aperture coupling.

wave is

B=-J&{[Mx+(+)2+h’(3)

-MZ(>)2COS’(;)} (z)

where PY is the electric polarizability, and MX and MZ are

the x- and z-components of the magnetic polarizability of

the small aperture, respectively. It is convenient to define a

new variable

2a~.—
Ag

[3)

and to indicate the transverse position of the aperture by X

()X=sin2 ~ .
a

Then A in (1) can be written as

A-$-j(u) -

where

(4)

(5)

(6)

/l=(M. -Py)x (7)

lr=Mz(l-x)-lJyx. (8)

0018-9480/82/0500-0777$00.75 @1982 IEEE



778 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-30, NO. 5, MAY 1982

The nature of the frequency dependence of A is now

succinctly contained in the function ~(u) in (6), and we

need only to examine ~(u) in regard to the variations of

coupling coefficient over a given frequency bandwidth. The

parameters k and h depend on the polarizabilities as well

as on the transverse position of the coupling aperture but

are independent of frequency.

We wish to determine the relative values of k and h

which will minimize the variation of the function ~( u ) over

a given bandwidth [u,, Uz] and to find a measure of this

optimum coupling flatness. Writing

we have

which has a single minimum fm at u = 1/$

f.(t)=+.

(9)

(lo)

(11)

At the ends, u, and Uz, of the prescribed frequency

band, the values of f( u,, c) and ~( Uz, $) are larger than

f~(f), all of which depend on the value of & The extent of
the variation of the ratio f ( u, &)/fW1(f ) over the range

[ U1, U2] is a measure of coupling flatness. For optimum

flatness we make the values of this ratio at the two ends

equal; that is

f(u, >t)=f(%, t)= fM($) (12)

where f~ denotes the maximum value of the function ~( .$).

Equation (12), in conjunction with (10), yields the condi-

tion for optimum flatness

<O=L (13)
U,U2 “

With (13), we have, from (10) and (11)

~~($o)=k(u,+uz) (14)

and

fti,(&o)=2kw. (15)

It is convenient to refer the variation of coupling to the

geometric mean of f~(to ) and fn(&o ) and define the opti-

mum coupling flatness in decibels by

(AC)O= 52010g,o
fM(&o)

[1

fM(’$o)

~ “ ‘lOIOg’O f~(fo)

u, + U2
= tilolog, o—

26 “
(16)

Equation (16) is independent of the shape of the aperture

as long as the small-hole theory holds. For full-band opera-

tion of the dominant mode in a rectangular waveguide

u] = 0.75 and U2 = 1.62, we obtain

(AC)O= 50.314dB (17)

which is the minimum obtainable coupling variation.

III. CONDITIONS FOR OPTIMUM COUPLING
FLATNESS

Although (16) indicates that the optimum coupling flat-

ness (AC )0 is not a function of aperture shape, the condi-

tion, as given in (13), for achieving this result depends

closely on the shape and the transverse position of the

aperture. We now consider two important special cases;

namely, a circular aperture and a T-shaped slot pair.

For a small circular hole of diameter din the broad wall

of a rectangular waveguide, as shown in Fig. 2, we have

l.fx=&fz=M=c
6

and

q=:.

(18)

(19)

From (7) and (8), we find k = MX/2 and h = M(l – 3X/2)

which, in conjunction with (9) and (13), lead to the require-

ment

x= 2
3+ U,U2

or

x r=1 sin-l 2
aw 3+ U,U2 “

Using u, = 0.75 and U2 = 1.62, we obtain

(20)

(21)

:=0.242. (22)

This result confirms with the findings of Cohn et al. [2],
who pointed out that for optimum coupling flatness, x/a

should be slightly less than 0.25.

If a T-shaped slot pair is used as in Fig. 3, the parameter

X defined in (4) is unity in association with Ml and <, of

the transverse slot and is zero corresponding to M, of the

longitudinal slot. Equations (7) and (8) become

k= A4– PV (23)

h= Mz– PY“ (24)

In practice, the slots are very narrow and P, may be

neglected. With this approximation the condition for opti-

mum coupling flatness (13) reduces to

Ml.r _

Mz – U1U2
(25)

For U1= 0.75 and U2 = 1.62, (25) gives

M,=l.215MX. ‘ (26)

This result, which requires M= to be slightly larger than MX,

has been noted experimentally by Riblet and Saad [3]. If
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conditions for maximizing the minimum directivity D,,,

over the band [ul, U2]

go=L (33a)
U,U2

So = 2k. (33b)
Fig. 2. Singlecircular aperture in broad-wall.

When (33a) and (33b) are satisfied, we find the maxi-

mized minimum (optimum) directivity at both ends of the

c242 frequency band to be

~T 2d

()

U2 + u,

o

-r (Dm)o=2010g,o R .

Y“
+ ~2d

For U1= 0.75 and U2 = 1.62, (34) works out

(D..). = 8.705dB.

(34)

to be

(35)\ ,,,/ “

Fig. 3. T-shapedslot pair in broad-wall.
We can now draw two important conclusions. First, we

see from (33a) and (13) that the same k/h ratio gives an

the slots have the same width, 12 should then be slightly optimum coupling flatness (K&, and a mafimum value

longer than 11 for coupling flatness. of the minimum directivity ( Dm ).. This fact was also noted

IV. OPTIMUM DIRECTIVITY LIMIT
experimentally by Riblet and Saad [3]. Second, (33b) re-

quires Py = O; consequently, a circular hole hating a non-

Another important problem for directional couplers is vanishing Py cannot reach an optimum directi~ty lifit. In

that of maximizing the minimum directivity over the the following section we examine what directivity a single

frequency band [u,, ZJ2]. DirectiW D is defined as the circular aPerture can protide”

ratio of the forward power to the backward power
V. DIRECTIVITY LIMIT FOR SINGLE CIRCULAR

D=2010g10 + (27) APERTURE

For a circular aperture, (18) and
which is frequency-dependent. By using ~( U) defined in (6) combination of (7) and (28) gives

and introducing
s=4k.

s=2J4x~ (28)
Substitution of {36) in(31) yields

we can simplif y the expressions of A and B given in ( 1) and

(2) and write (27) as

D = 2010g10
f(u)

Su–f(u) “
(29)

Similar to the argument used in arriving at the condition

for optimum coupling flatness, it can be shown that

minimum directivities occur at both ends of the frequency

band and the minimum over the band is maximized when

the directivities at u, and U2 are made equal. It is conveni-

ent to invert the fraction within the absolute signs in (29)

Sr.1-f(u) s
= —–1 .

f(u)
(30)

k+-j

We require

s—.l=l–A (31)

k+~ kd -
u; u;

and a minimums. From (7) and (28) we know that

(32)s=2(k+Px X)a2k.

Writing $= k/h as in (9), (31), and (32) yield the following

(19) hold, and the

(36)

The corresponding directivity at both ends of the frequency

band is

[ 11
Dm = 2010g10

()

44%:
1– —

.&; +1

[ I

1
= 2olog,~

()

(38)
4&; _ ~

<u; -1-1

With U1=0.75 and U2 = 1.62, (37) and (38) become! respec-

tively

~=; =O.236 (39)

and

D~=5.501dB (40)
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which is seen to be less than ( Dm )0 in (35),

Use of (18) and (19) in (7) and (8) gives

~=J?L-
2–3X

(41)

from which the transverse position of the circular hole can

be found

2( =’0 277

‘= 1+3.$ “

and

x 1—=—.—sin–’ 0.277 =0.176.
a7r

(42)

(43)

We note that this position is different from that in (22) for

optimum coupling flatness. In general, optimum coupling

flatness is a more important consideration inasmuch as a

higher directivity can be obtained by using an array of

holes.

In some cases, it may be desired that the directivity does

not become negative ( A > B in (27)) on [u,, zq ]. The condi-

tion for this constraint with a single circular aperture can

be found by using (18) and (19) in (29)

D = 2010gi0
U2X+(2–3X)

3U2X–(2–3X) -
(44)

In the range of our interest, both the numerator and the

denominator in (44) are positive. To make D >0, we

require

U2X+(2–3X) Z3U2X–(2–3X)

over [u,, U2], or

2
p<—

3+U;

which, for U2 = 1.62, is equivalent to

‘<0.203.
a

This was the value given in [4]. In view of (22),

does not yield an optimum coupling flatness.

VI. COUPLING INEQUALITY

(45)

(46)

this value

In the above, we have studied the conditions for opti-

mum coupling flatness and optimum directivity in the

design of directional couplers using a single aperture (in-

cluding a slot pair) in the common broad wall between two
rectangular waveguides. In general, these conditions are

not satisfied simultaneously and it is interesting to examine

what the relation is among the three factors: coupling

flatness, minimum directivity, and waveguide bandwidth.

To this end, we define a coupling flatness coefficient AC, a

minimum directivity coefficient q~, and a relative wave-

guide bandwidth WA as follows:

AC= *lOloglO(A~) (47)

Dm = 20 log ,O@m (48)

W-A= ‘“A-“2
go

(49)

where Agl and Ag2 correspond to 2a/ul and 2a/u2,

respectively, and Ago is the midband guide wavelength

2AglAg~ 4a

‘go= Ag, + Ag2 = “U1+U2
(50)

With (50), bl[~ in (49) can be written as

%-i=%. (51)

Compared to the optimum values, AC> ( AC)O and Dms

(Dm)O. Consequently, from (16) and (34), we can write

U1+ U*
A~>———.——— (52)

26

and

U7+U,
@mG L (53)

U* —u, ”

Combination of (51), (52), and (53) yields the following

inequality:

W-:)m
(54)

(A~)2 <2”

When the conditions for optimum coupling flatness and

optimum directivity are simultaneously satisfied over a

specified frequency band

OW~(”i)~)o = 2(AP );. (55)

It is obvious from (54) that a wider bandwidth results in

either a poorer coupling flatness or a lower minimum

directivity, or both.

VII. CONCLUSION

It is not accidental that there exist performance limita-

tions for directional couplers with a single aperture be-

tween contiguous waveguides inasmuch as the coupling

properties of the electric and magnetic fields are frequency-

and position-dependent. In this paper, we have examined

the conditions for and the expressions of the best coupling

flatness and optimum directivity obtainable over a given

bandwidth. We have also formulated an inequality which

shows the upper bound of a relationship among the cou-

pling flatness coefficient, the minimum coupling directiv-

ity, and the relative waveguide bandwidth.

Our work is based on Bethe’s small-hole theory and no

consideration has been given to the finite thickness of the

waveguide wall. Preliminary analytical investigation has

indicated that larger apertures with a finite thickness result

in a poorer coupling flatness. More study in this respect is

needed in the light of recent work by MacDonald [5] and

Levy [6].
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An Alternative Theory of Optical ~
Waveguides with Radial Inhomogeneities

ANDREAS TONNING, SENIOR MEMBER, IEEE

Abstract —The field equations are solved for an inhomogeneous dielec-

tric cylinder with azimuthaf symmetry. The solutions are shown to satisfy

particular orthogonality relations and allow derivation of simple, generally

valid expressions for dispersion relation, power flow, energy density, and

group delay. A method for numerical solution of the equations, the mod-

ified staircase method, is proposed. It is shown that it leads to expressions

similar to those of the Wentzel-Kramer-Brillouin (WKB) method, but,

unlike the latter, is valid for the lowest order guided modes. The method

has been tested in a computer program.
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I. INTRODUCTION

T HE PRESENT paper presents a theory of wave propa-

gation on an inhomogeneous optical waveguide of

cylindrical symmetry. The discussion is based on a formu-

lation of the field equations as a single, first-order differen-

tial equation in a four-dimensional vector space. Similar

formulations have been used by several authors as a basis

for numerical, field calculations [1], [2]. Vigants and

Schlesinger [3] in a pioneering paper argue for this type of

approach and point out the advantages obtained by treat-

ing the field equations as a set of first-order equations

when use is made of existing mathematical techniques for
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