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On Performance,Limitations of Aperture
Coupling Between Rectangular Waveguides

CHANG-HONG LIANG anD DAVID K. CHENG, FELLOW, IEEE

Abstract —The conditions for and expressions of the best coupling
flatness and optimum directivity obtainable over a given bandwidth from
broad-wall aperture coupling between rectangular waveguides are derived.
An inequality representing a constraining relationship among coupling
flatness, directivity, and bandwidth is established.

I. INTRODUCTION

ESPITE THE importance of wide-band waveguide

directional couplers using discrete apertures, few stud-
ies have been made on the conditions for optimum single-
aperture performance from the synthesis viewpoint. In this
paper, we first obtain a formula for the best coupling
flatness attainable over a prescribed bandwidth for a small
aperture of an arbitrary shape in the common broad wall
between two rectangular waveguides. The conditions for
achieving the optimum coupling flatness are derived and
applied to both circular and T-shaped slot-pair apertures.

Next, we examine the minimum coupling directivity over -

the bandwidth and find the requirements for maximizing
this minimum directivity. Thirdly, we formulate an inequal-
ity which shows the interrelationship among the coupling
flatness coefficient, the minimum coupling directivity, and
the relative waveguide bandwidth,

II.  OpTiMUM COUPLING FLATNESS

Consider two rectangular waveguides with a common
broad wall in which a single aperture is cut, as shown in
Fig. 1. The dimensions of the aperture in terms of wave-
length are such that Bethe’s small-hole coupling theory
applies [1}. Assuming negligible wall thickness, the normal-
ized amplitude of the forward scattering wave for the
dominant TE |, mode is [2]

2= _ g 2
a= el (3]s

o X
sm2( - )
a

+Mz(%)zcosz(%)} (1)

and the normalized amplitude of the backward scattering
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Fig. 1. Rectangular waveguide with broad-wall aperture coupling.

wave is

_ 27
B= ab?xg{

A (2
_ Ze 2 E_’j)
MZ( Za) cos ( - } ()
where P, is the electric polarizability, and M, and M, are
the x- and z-components of the magnetic polarizability of

the small aperture, respectively. It is convenient to define a

new variable
u=22 3)

g

and to indicate the transverse position of the aperture by X
X=sin2(ﬂ). (4)
a
Then A in (1) can be written as

A=L2 f(w) 5)

where
fuw)y=ku+2 (6)
k=(M,—P,)X (7)
h=M/(1—X)—-P,X. (8)
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The nature of the frequency dependence of 4 is now
succinctly contained in the function f(u) in (6), and we
need only to examine f(u) in regard to the variations of
coupling coefficient over a given frequency bandwidth. The
parameters k and s depend on the polarizabilities as well
as on the transverse position of the coupling aperture but
are independent of frequency.

We wish to determine the relative values of k and &
which will minimize the variation of the function f(u) over
a given bandwidth [u,, u,] and to find a measure of this
optimum coupling flatness. Writing

$=Z )

we have

f(u,£)=k(u+§iu) (10)

which has a single minimum £, at u=1/,/&

fu(8)= (11)

2k
V&

At the ends, u, and u,, of the prescribed frequency
band, the values of f(u,,§) and f(u,,§) are larger than
£,.(§). all of which depend on the value of £. The extent of
the variation of the ratio f(u,£)/f,(§) over the range
[#,, u,] is a measure of coupling flatness. For optimum
flatness we make the values of this ratio at the two ends
equal; that is

f(ubg):f(uZag):fM(g) (12)

where f,, denotes the maximum value of the function f(§).
Equation (12), in conjunction with (10), yields the condi-
tion for optimum flatness

1

o= iy (13)
With (13), we have, from (10) and (11)
Su(&0) = k(uy +uy) (14)
and
fm(‘fo)ZZkvuluz- (15)

It is convenient to refer the variation of coupling to the
geometric mean of f,,(£,) and f,(§,) and define the opti-
mum coupling flatness in decibels by

_ fu(éo) [fM(&))]
AC), = +201 — " = +10l
( )0 0810 ,_fM(fo)fm(go) 0810 fm(g())
= *=10log,, L (16)

Equation (16) is independent of the shape of the aperture
as long as the small-hole theory holds. For full-band opera-
tion of the dominant mode in a rectangular waveguide
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u,~0.75 and u, ~1.62, we obtain
(AC), = =0.314dB

which is the minimum obtainable coupling variation.

(17)

1II. CoNDITIONS FOR OPTIMUM COUPLING
FLATNESS

Although (16) indicates that the optimum coupling flat-
ness (AC), is not a function of aperture shape, the condi-
tion, as given in (13), for achieving this result depends
closely on the shape and the transverse position of the
aperture. We now consider two important special cases;
namely, a circular aperture and a T-shaped slot pair.

For a small circular hole of diameter d in the broad wall
of a rectangular waveguide, as shown in Fig. 2, we have

d3
M,=M.=M="¢ (18)
and
M
Py:—i—. (19)

From (7) and (8), we find k = MX/2 and h= M(1—3X/2)
which, in conjunction with (9) and (13), lead to the require-
ment

2

X= 3+ uu,

(20)

(1)

X
— =—S8n
a

1. 2
7T 3+t uu,

Using u, = 0.75 and u, =1.62, we obtain
Z =0.242.

£ (22)
This result confirms with the findings of Cohn er al. [2],
who pointed out that for optimum coupling flatness, x /a
should be slightly less than 0.25.

If a T-shaped slot pair is used as in Fig. 3, the parameter
X defined in (4) is unity in association with M, and P, of
the transverse slot and is zero corresponding to M, of the

longitudinal slot. Equations (7) and (8) become
k=M, —P,
h=M,—P,.

(23)
(24)
In practice, the slots are very narrow and P, may be

neglected. With this approximation the condition for opti-
mum coupling flatness (13) reduces to

M, 1

Mz S (25)
For u, =0.75 and u, =1.62, (25) gives
M,=1215M,. (26)

This result, which requires M, to be slightly larger than M,
has been noted experimentally by Riblet and Saad [3]. If
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Fig. 2. Single circular aperture in broad-wall.
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Fig. 3. T-shaped slot pair in broad-wall.

the slots have the same width, /, should then be slightly
longer than /, for coupling flatness.

IV. OpTmMUM DIRECTIVITY LIMIT
Another important problem for directional couplers is
that of maximizing the minimum directivity over the
frequency band [u,, u,]. Directivity D is defined as the
ratio of the forward power to the backward power

D=20log,o| % (27)

which is frequency-dependent. By using f(u) defined in (6)
and introducing

s=2M,X (28)

we can simplify the expressions of 4 and B given in (1) and
(2) and write (27) as

f(u)
su—f(u)|

Similar to the argument used in arriving at the condition
for optimum coupling flatness, it can be shown that
minimum directivities occur at both ends of the frequency
band and the minimum over the band is maximized when
the directivities at #, and u, are made equal. It is conveni-
ent to invert the fraction within the absolute signs in (29)

D =20log,, (29)

)| ), (30)
f(u) k..}__h__
)
We require
1= sh (31)
k+ ) k+ —
U U
and a minimum s. From (7) and (28) we know that
s=2k+P.X)=2k. (32)

Writing £ = & /h as in (9), (31), and (32) yield the following
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conditions for maximizing the minimum directivity D
over the band [, u,]
1

b= Uy

5= 2k. (33b)

When (33a) and (33b) are satisfied, we find the maxi-
mized minimum (optimum) directivity at both ends of the
frequency band to be

(33a)

+
(D)o =20l0g,o| 255 ). ()
Uy — Uy
For u, =0.75 and u, =1.62, (34) works out to be
(D,,), =8.705dB. (35)

We can now draw two important conclusions. First, we
see from (33a) and (13) that the same k /h ratio gives an
optimum coupling flatness (AC),, and a maximum value
of the minimum directivity (D, ),. This fact was also noted
experimentally by Riblet and Saad [3]. Second, (33b) re-
quires P, = 0; consequently, a circular hole having a non-
vamshmg P, cannot reach an optimum directivity limit. In
the followmg section we examine what directivity a single
circular aperture can provide.

V. DiIRecTIvITY LIMIT FOR SINGLE CIRCULAR
APERTURE

For a circular aperture, (18) and (19) hold, and the
combination of (7) and (28) gives

s = 4k. (36)
Substitution of (36) in (31) yields
o V() 120 = (w4 3)
k1 . (37
h 6ulu3 (37)

The corresponding directivity at both ends of the frequency-
band is

S S
L )

D, =20log;
| ( ful +1

1
1
4£u%

£u§+1

(38)

=20log,,

With , = 0.75 and u, =1.62, (37) and (38) become, respec-
tively

£=—=0236 (39)

|

and

D, =5.501dB (40)
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which is seen to be less than (D, ), in (35).

Use of (18) and (19) in (7) and (8) gives
X

€= 2—-3X (41)

from which the transverse position of the circular hole can
be found

x=-—25_ —0277

1438 (42)

and

% = —717 sin~1/0.277 = 0.176.

We note that this position is different from that in (22) for
optimum coupling flatness. In general, optimum coupling
flatness is a more important consideration inasmuch as a
higher directivity can be obtained by using an array of
holes.

In some cases, it may be desired that the directivity does
not become negative (4= B in (27)) on [u,, u,]. The condi-
tion for this constraint with a single circular aperture can
be found by using (18) and (19) in (29)

WX +(2-3X)
3ulX—(2-3X)

(43)

D=20log,, . (44)

In the range of our interest, both the numerator and the
denominator in (44) are positive. To make D=0, we
require

W X+(2-3X)=3u’X—(2—3X) (45)
over [u;, u,], or
2
<
3+ ul
which, for u, =1.62, is equivalent to
-z-so.zos. (46)

This was the value given in [4]. In view of (22), this value
does not yield an optimum coupling flatness.

VI. COUPLING INEQUALITY

In the above, we have studied the conditions for opti-
mum coupling flatness and optimum directivity in the
design of directional couplers using a single aperture (in-
cluding a slot pair) in the common broad wall between two
rectangular waveguides. In general, these conditions are
not satisfied simultaneously and it is interesting to examine
what the relation is among the three factors: coupling
flatness, minimum directivity, and waveguide bandwidth.
To this end, we define a coupling flatness coefficient AC, a
minimum directivity coefficient %), and a relative wave-
guide bandwidth U, as follows:

AC = =10log,,(AC) (47)
D, = 20log,; D, (48)
Aga—A
gl 22
A )\go ( )

where A, and A, correspond to 2a/u, and 2a/u,,
respectively, and A, is the midband guide wavelength

. 2}\g1}\g2 . da

AU W W (50)
With (50), U, in (49) can be written as
2 2
_hTu
U, = Y, (51)

Compared to the optimum values, AC = (AC), and D,, <
(D,,)o. Consequently, from (16) and (34), we can write
U+ u,

AC= (52)
2yuqu,
and
5 U, tu,
D, =< PR (53)

Combination of (51), (52), and (53) yields the following
inequality:
U\,
—t ),

(acy’

When the conditions for optimum coupling flatness and
optimum directivity are simultaneously satisfied over a
specified frequency band

U, (D, )y = 2(AC)s. (55)

It is obvious from (54) that a wider bandwidth results in
either a poorer coupling flatness or a lower minimum
directivity, or both.

(54)

VIL

It is not accidental that there exist performance limita-
tions for directional couplers with a single aperture be-
tween contiguous waveguides inasmuch as the coupling
properties of the electric and magnetic fields are frequency-
and position-dependent. In this paper, we have examined
the conditions for and the expressions of the best coupling
flatness and optimum directivity obtainable over a given
bandwidth. We have also formulated an inequality which
shows the upper bound of a relationship among the cou-
pling flatness coefficient, the minimum coupling directiv-
ity, and the relative waveguide bandwidth.

Our work is based on Bethe’s small-hole theory and no
consideration has been given to the finite thickness of the
waveguide wall. Preliminary analytical investigation has
indicated that larger apertures with a finite thickness result
in a poorer coupling flatness. More study in this respect is
needed in the light of recent work by MacDonald [5] and

Levy [6].

CONCLUSION
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~ An Alternative Theory of Optical
Waveguides with Radial Inhomogeneities

ANDREAS TONNING, SENIOR MEMBER, IEEE

Abstract —The field equations are solved for an inhomogeneous dielec-
tric cylinder with azimuthal symmetry. The solutions are shown to satisfy
particular orthogonality relations and allow derivation of simple, generally
valid expressions for dispersion relation, power flow, energy density, and
group delay. A method for numerical solution of the equations, the mod-
ified staircase method, is proposed. It is shown that it leads to expressions
similar to those of .the Wentzel-Kramer-Brillouin (WKB) method, but,
unlike the latter, is valid for the lowest order guided modes. The method
has been tested in a computer program.
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I. INTRODUCTION

HE PRESENT paper presents a theory of wave propa-

gation on an inhomogeneous optical waveguide of
cylindrical symmetry. The discussion is based on a formu-
lation of the field equations as a single, first-order differen-
tial equation in a four-dimensional vector space. Similar
formulations have been used by several authors as a basis
for numerical field  calculations [1], [2]. Vigants and
Schlesinger [3] in a pioneering paper argue for this type of
approach and point out the advantages obtained by treat-
ing the field equations as a set of first-order equations
when use is made of existing mathematical techniques for
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